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Abstract

In this paper we develop the optimal tree-shaped flow paths for cooling a disc-shaped body by convection. Heat is

generated uniformly over the disc area. The coolant enters through the center of the disc, and exits through ports

positioned equidistantly along the perimeter. The unknown is the flow architecture. The constraints are the disc size and

the total volume occupied by the ducts. It is assumed that the ducts are narrow enough so that the flow is hydro-

dynamically and thermally fully developed. The ultimate goal is to determine flow architectures that reach simulta-

neously two objectives: (i) minimal global fluid flow resistance (or pumping power), and (ii) minimal global thermal

resistance. When the architecture is optimized for (i), the result is a dendritic structure in which every geometric feature

is uniquely determined. The corresponding thermal resistance decreases as the total mass flow rate and the pumping

power increase. When the objective is (ii), the optimal architecture has radial ducts, not dendrites. The corresponding

fluid-flow resistance increases as the flow rate increases and the global thermal resistance decreases. Put together, these

geometric results show that methods (i) and (ii) lead to nearly the same combined performance (thermal and fluid).

Examined more closely, the dendrites produced by method (i) perform progressively better as the length scales become

smaller. Optimized increasing complexity is the route to high thermal and fluid-flow performance in the limit of

decreasing scales.

� 2003 Elsevier Ltd. All rights reserved.
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1. Objective

Constructal theory [1] recommends the use of a hi-

erarchical tree-shaped (dendritic) path as the geometric

form that maximizes the access of a stream between one

point (source, or sink) and an infinity of points (volume,

or area). Dendritic flow architectures were first reported

for the cooling of electronics [2], where they were used

for optimizing the insertion of high-conductivity blades

and needles into the heat-generating packages. Trees for

heat conduction and convection, fin assemblies, fluid

flow, traffic, economics and business were optimized
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based on constructal theory, and are reviewed in [1]. In

particular, trees for convection were analyzed by Bejan

and Errera [3], Bejan et al. [4], Pence [5], Wechsatol et al.

[6–8], Chen and Cheng [9] and Lorente et al. [10]. Trees

for conduction (high-conductivity inserts) on a disc were

optimized based on constructal theory by Rocha et al.

[11], and based on numerical evolutionary algorithms by

Xia et al. [12]. The interest in constructal flow archi-

tectures is spreading to other sectors of the field of heat

and mass transfer, as illustrated by recent papers on the

hierarchical geometric structures of boiling [1,13,14] (an

idea continued in [15]) and heat exchangers and mass

exchangers [16–18]. Important applications are also

found in civil engineering and urban design [19].

In this paper we consider the fundamentals of opti-

mizing geometry when the objective is the cooling by

convection of a disc-shaped body that generates heat
ed.
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Nomenclature

cp specific heat at constant pressure, J kg�1 K�1

d0 spacing between outlets on the disc peri-

meter, m

D duct diameter, or thickness of projected duct

image, m

f dimensionless flow resistance, Eq. (17)

j pairing level

k thermal conductivity, Wm�1 K�1

L0;1;2 duct lengths, m

_mm total mass flow rate, kg s�1

_mm00 mass flow rate per unit area, kg s�1 m�2

_mm0 mass flow rate through one central duct,

kg s�1

M dimensionless mass flow rate, Eq. (7)

np number of outlets on the disc perimeter

n0 number of central ducts

Nu Nusselt number

p wetted duct perimeter, m

p construct levelbPP overall pressure drop, Eq. (19)

q total heat current, W

q00 heat generation rate per unit area, Wm�2

r radial position, m

R disc radius, m

t disc thickness, m

Tf fluid bulk temperature at the duct outlet, K

Tm maximum (hot spot) temperature, K

Tw wall temperature, K

T0 inlet temperature, KeTTm dimensionless global thermal resistance,

Eq. (5)

U0 mean fluid velocity, m s�1

V total duct volume, m3

_WW pumping power, W

x1 radial distance between the first and second

pairing levels, m

Greek symbols

DP pressure drop, Pa

h angular coordinate, rad, Eq. (9)

l viscosity, kg s�1 m�1

m kinematic viscosity, m2 s�1

/ projected area fraction occupied by the

ducts, Eq. (1)

Superscripts

(~) dimensionless variables, Eqs. (9) and (14)

(̂ ) dimensionless variables, Eq. (18)
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volumetrically. The cooling effect is provided by a single

stream of single-phase fluid, which enters the disc

through its center, and flows toward the periphery.

The objective is to find the flow patterns that minimize

at the same time the hot-spot temperature of the solid,

and the flow resistance encountered by the coolant.

For simplicity, we assume that the disc is sufficiently

thin so that it can be modeled as a disc with uniform rate

of heat generation per unit area (q00). The disc radius is

R, and the fluid mass flow rate is _mm. The heat is gener-

ated at every point in the solid material of thermal

conductivity k. It is then conducted through the solid to

the nearest flow channel, and, later, it is convected by

the stream that flows through the channel.

The present study has three parts. In the first, we

analyze the heat-transfer performance of tree-shaped

flows that have been optimized for minimal flow resis-

tance, or minimal pumping power. The second part of

this study is devoted to the pure heat transfer problem of

determining the flow patterns that minimize the global

thermal resistance of the system. We also determine the

corresponding fluid mechanics performance (pressure

drop, pumping power) of the heat-transfer optimized

cooling scheme. In the concluding part of the study, we

consider the combined fluid-flow and heat-transfer op-
timization of the flow architecture. An important issue is

whether the performance of the designs optimized in the

first phase of this work is much different than the per-

formance of the structures optimized in the second phase.

Furthermore, is it necessary to optimize the flow struc-

ture for minimum thermal resistance and minimum flow

resistance at the same time? Are the flow-optimized tree

networks nearly optimal from a heat transfer standpoint?

Unlike in studies of thermodynamic optimization

(e.g., [20–22]), in which the search is for a unique bal-

ance (for minimal irreversibility) between heat-transfer

performance and fluid-flow performance, here we seek

designs (architectures, configurations) in which both

figures of merit are as high as possible. On a graph of

thermal resistance versus fluid flow resistance (Fig. 1),

we want the optimized flow architecture to be repre-

sented by a curve that is situated as close as possible to

the origin. There is one curve for each flow architecture,

as shown by the porous heat exchanger structures tested

in [23]. The main features of these tests are illustrated

qualitatively in Fig. 1. In forced convection configura-

tions, the thermal resistance decreases as the pumping

power increases. To determine the performance curve

for each flow architecture is the objective of the analysis

and optimization reported in this paper.



Fig. 2. Flow pattern with radial ducts, and isosceles triangle

approximation of the sector associated with one duct.

Fig. 1. Search for flow architectures with low thermal resis-

tance and low fluid-flow resistance.
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2. Radial flow pattern without branches

To develop the numerical model and nomenclature,

consider the simplest design (Fig. 2): the coolant enters

through the center of the disc, and flows along n0 radial
ducts. The mass flow rate through each duct is _mm0 ¼
_mm=n0. When n0 is of order 10 or greater, a sector that has

one duct as centerline can be approximated by an isos-

celes triangle of base 2pR=n0 and height R. This trian-

gular model is shown in the lower part of Fig. 2. In order

to determine the global thermo-fluid performance of the

disc-shaped system, it is sufficient to describe the flow of

heat and fluid in one sector. It is assumed that the space

occupied by the duct is a small fraction of the entire

space,

/ ¼ n0DR
pR2

� 1 ð1Þ

Here D is the thickness of the duct image projected on

the disc area. The duct geometric aspect ratio is

D=R ¼ p/=n0. The approximation (1) permits an anal-

ysis in which the ducts are treated as lines drawn on the

disc. This limits the validity domain of the analysis, but

justifies the calculation of pressure drops based on the

long and thin duct sections, by neglecting the losses at

junctions.

If q is the total heat current generated by the disc,

then the heat generation rate per unit area is q00 ¼
q=ðpR2Þ. The effect of q00 is to raise all the temperatures

above the lowest temperature (T0), which belongs to the

coolant inlet. The highest temperature (Tm) occurs in the

two peripheral corners of the sector. The overall tem-

perature difference that drives the heat transfer process

is Tm � T0. The overall thermal resistance of the disc is
ðTm � T0Þ=q, which will be nondimensionalized later in

Eq. (5).

We evaluate the thermal resistance by noting that

when the sector is slender the conduction heat flux

through the solid material of thermal conductivity k
proceeds in the direction perpendicular to the duct. The

overall temperature difference Tm � T0 is the sum of three

contributions,

Tf � T0 ¼
pq00R2

n0 _mm0cp
ð2Þ

Tw � Tf ¼
pq00RD
n0pkfNu

ð3Þ

Tm � Tw ¼ p2R2q00

2n20kt
ð4Þ

where Tf , Tw, t, kf and Nu are the fluid bulk temperature

at the duct outlet, the duct wall temperature at the

outlet, the disc thickness, the fluid thermal conductivity,

and the Nusselt number based on D. Eq. (2) is the first

law of thermodynamics applied to one sector. Eq. (3) is

the statement that the heat current that arrives in the

angular direction at the wall end of the duct, q00pR=n0, is



Fig. 3. The thermal resistance of the radial flow structure

shown in Fig. 2: comparison between the numerical and ana-

lytical results.
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the same as the heat current that flows from the wall to

the fluid in the plane of the outlet, hpðTw � TfÞ, where h
and p are the heat transfer coefficient and the wetted

perimeter of the duct cross-section. We also used the

Nusselt number definition Nu ¼ hD=kf , with the obser-

vation that for fully developed laminar flow Nu is a

constant with a value between 1 and 10.

Eq. (4) is obtained from the temperature distribution

along the perimeter of length d0=2 ¼ 2pR=ð2n0Þ, from Tm
to Tw. The analysis is described in [1] and [2]. In brief,

because the solid generates heat at every point, the

temperature distribution along the perimeter is para-

bolic, with zero temperature gradient at Tm, and the

largest temperature gradient at Tw. The parabolic shape

is such that the temperature gradient at Tw is 4ðTm�
TwÞ=d0, i.e., twice the gradient based on the temperature

difference separated by d0=2. The heat flux that arrives at
Tw, namely kt½4ðTm � TwÞ=d0�, is equal to the heat gen-

eration rate integrated along d0=2, namely ðd0=2Þq00.
From this equality follows Eq. (4).

By adding Eqs. (2)–(4), and nondimensionalizing the

sum as the overall thermal resistance of the disc,

eTTm ¼ Tm � T0
q=ðktÞ ð5Þ

we obtain the expression

eTTm ¼ 1

M
þ p/kt
n20kfpNu

þ p
2n20

ð6Þ

The number M is a dimensionless mass flow rate,

M ¼ _mmcp
kt

ð7Þ

Alternatively, by using the heat-transfer-units concept of

heat exchanger design, M�1 may be regarded as the

‘‘number of conductive heat transfer units’’.

The three terms of eTTm represent, in order, (i) the ra-

dial temperature increase experienced by the coolant, (ii)

the temperature difference between the duct wall and the

fluid, and (iii) the maximum temperature difference

across the heat-generating solid. The ratio between

terms (ii) and (iii) is 2/kt=ðNukfpÞ, in which 2=Nu is a

number of order 1. This means that the second term is

negligible in the limit of thin ducts, so thin that the

projected area fraction / is smaller than kfp=ðktÞ. The
following numerical work on radial ducts and more

complicated configurations is based on the assumption

that / < kfp=ðktÞ, such that the wall-fluid thermal re-

sistance is negligible.

The solid curves in Fig. 3 show the behavior of eTTm

when the second term of Eq. (6) is neglected. The ther-

mal resistance drops when the flow rate (M) increases.

This trend matches the behavior anticipated in Fig. 1,

because along with the increase in flow rate comes an

increase in pumping power. The thermal resistance also
decreases as n0 increases, i.e., as the flow structure be-

comes more complex. This second trend––the effect of

flow architecture––is the direction explored in the re-

mainder of this paper.

We used the preceding analysis and the radial pattern

of Fig. 2 for the purpose of developing and testing

(benchmarking) the numerical simulation of heat flow in

the disc-shaped system. Heat conduction was simulated

numerically in a single sector, which has uniform heat

generation, and a line-thin stream of coolant on the

centerline. The boundaries of the sector are insulated.

The equation for steady two-dimensional heat conduc-

tion in polar coordinates ðr; hÞ is

1

~rr
o

o~rr
~rr
oeTT
o~rr

 !
þ n0=p

~rr

� �2
o2eTT
o~hh2

þ 1

p
¼ 0 ð8Þ

where

~rr ¼ r
R

~hh ¼ h
p=n0

eTT ¼ T � T0
q=kt

ð9Þ

The boundary conditions are oeTT =o~rr ¼ 0 at ~rr ¼ 1,

oeTT =o~hh ¼ 0 at ~hh ¼ 1, eTT ¼ 0 and oeTT =o~rr ¼ 0 at ~rr ¼ 0, andeTTf ¼ ðTf � T0Þ=ðq=ktÞ ¼ M�1 at ~rr ¼ 1, ~hh ¼ 0. The conti-

nuity of heat flux through the pipe wall (~hh ¼ 0) requires

1

2
M

oeTT
o~rr

¼ n20
p~rr

oeTT
o~hh

ð10Þ

Eq. (8) was solved by the second-order accurate finite

differences method. The grid was nonuniform. The grid

fineness was increased in steps by decreasing the grid

spacings to half of their original values, until the step

change in the peak eTT value [eTTm, Eq. (5)] was less than

1%. The highest temperature occurred at ~rr ¼ 1 and
~hh ¼ 1, in accordance with the Tm location indicated in

Fig. 2.



Fig. 4. Numerical solution for the thermal resistance of the

radial design of Fig. 2.
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Fig. 3 shows that the numerical results agree with Eq.

(6) in the limit where the analysis is valid: slender sectors

(large n0). The numerical method was used in the re-

mainder of the study because it does not require the use

of the slender-sectors approximation. To start with, in

Fig. 4 the numerical analysis of the radial design was

extended to the extreme cases n0 ¼ 2 and n0 ¼ 1, which

are far from the domain of applicability of Eq. (6). The

overall thermal resistance decreases monotonically as n0
increases, however, when n0 becomes greater than ap-

proximately 6 the resistance is relatively insensitive to

further increases in n0.
3. Competition between thermal and fluid flow resistances

The radial design of Fig. 2 provides the first concrete

example of the competition between the overall thermal

resistance and the required overall fluid flow resistance.

To show this analytically, assume that each radial duct is

a round tube of diameter D with Hagen-Poiseuille flow.

This is the same D that in Eq. (1) was the thickness of the

duct image projected on the disc area. The round tube

assumption is made for the purpose of illustration, be-

cause any other duct cross-section with a hydraulic di-

ameter comparable to D has fluid flow characteristics

similar to those described in this section.

To evaluate the overall flow resistance encountered

by the total stream _mm, we begin with the mean fluid

velocity through one tube,

U0 ¼
D2

32l
DP
R

ð11Þ

where DP is the overall pressure difference measured

between the center and the periphery of the disc. The

flow rate through one tube is _mm0 ¼ U0qpD2=4. Com-

bining U0 with Eq. (11) and _mm0 ¼ _mm=n0, where _mm is the
total flow rate for the disc, we obtain the overall flow

resistance

DP
_mm

¼ 128mR
pn0D4

ð12Þ

The flow resistance decreases rapidly as the duct dia-

meter increases. This trend is resisted by requirements

such as Eq. (1): the fluid flow network can occupy only a

small fraction of the space occupied by the system. As-

sume that the total volume occupied by the ducts is

fixed,

V ¼ n0
pD2

4
R ð13Þ

so that D varies as n�1=2
0 . The pumping power required

by the entire assembly is _WW ¼ _mmDP=q. This can be ex-

pressed in dimensionless form by using Eqs. (7) and (12),eWW ¼ 8pn0M2 ð14Þ

where

eWW ¼ _WW
qc2pV

2

mk2t2R3
ð15Þ

It can be shown that the general form of Eq. (14) iseWW ¼ 8pfM2 ð16Þ

where f is a dimensionless flow resistance defined by

f ¼ n0
Xp
j¼0

2j=3
Lj

R

" #3
ð17Þ

Here p is the construct level, and Lj is the pipe length at

the pairing level j. In the case of radial tubes without

ramifications (Fig. 2), the factor f is equal to n0.
In conclusion, Eq. (14) shows that the pumping

power increases in proportion to n0. A small number of

tubes is desirable from the fluid mechanics point of view.

This message is in conflict with that of Fig. 4, which

showed that a larger n0 is better from the heat transfer

point of view. The designer prefers low eWW and low eTTm at

the same time. This is why in Fig. 5 we show the result of

combining Fig. 4 with Eq. (14): M is the parameter that

varies along each of the curves.

Which radial design (n0) is best depends on the ap-

plication. If the available pumping power is in the range

104 < eWW < 105, then the best performance (the minimaleTTm) is offered by the n0 ¼ 6 design. The optimal number

of radial tubes increases as eWW increases. The ability to

vary n0, or the freedom to contemplate an entire family

of radial designs, is represented by the ‘‘envelope’’ of the

curves shown in Fig. 5, which is approximatelyeTTm ffi 3:75 eWW �0:37. How this relation brings the perfor-

mance in the desirable operating domain (cf. Fig. 1) is

discussed in Fig. 14. This relation is not a true envelope

because in Fig. 5 there is not an infinity of constant–n0



Fig. 5. The competition between overall thermal resistance and

pumping power in the radial flow structure of Fig. 2.

Fig. 6. The structure with n0 ¼ 3, one level of pairing and

minimal flow resistance.

Table 1

Optimized flow structures with one level of pairing and minimal

flow resistance (e.g., Fig. 6)

n0 bLL0
bLL1 fmin

3 0.214 0.822 5.849

4386 W. Wechsatol et al. / International Journal of Heat and Mass Transfer 46 (2003) 4381–4391
curves. What we have is a power-law expression that

plays adequately the role of common tangent for the few

constant–n0 curves. The points of tangency are identified
with circles. They are noted (recorded and reproduced in

Fig. 14) as indicators of how closely each curve ap-

proaches the desirable limit (low eTTm, low eWW ). The

number np represents the number of outlets on the disc

perimeter, namely np ¼ n0 in the case of radial ducts.
6 0.628 0.426 9.471

12 0.821 0.216 15.605

24 0.913 0.108 27.625
4. One level of branching: the minimization of flow

resistance

One conclusion that stems from Fig. 5 is that the

simplest flow structure is the best when two objectives

must be met at the same time (low eTTm and low eWW ). This

is true provided that the competing designs are of the

same class (e.g., radial structures, Fig. 2). In this section

and the next we show that there exist flow structures that

are represented by curves lower than those shown in Fig.

5. They belong to classes of flow structures that are more

complex than the radial designs examined until now.

The more complex structures are dendritic.

Fig. 6 shows the main features of the dendritic flow

structure when a single level of pairing is placed at the

radial distance L0. There are n0 ¼ 3 radial tubes con-

nected to the center, and np ¼ 2n0 equidistant outlets on
the disc perimeter. The design has three degrees of

freedom: n0, L0 and the ratio of the diameters of the L0

and L1 tubes. The optimal diameter ratio subject to total

tube volume is 21=3 [1,24]. In addition to this optimiza-

tion, the dimensionless flow resistance f can be mini-

mized with respect to L0 subject to the constraint of total

tube volume and fixed disc radius. The total tube volume

V is the same as for the radial designs discussed earlier;

in the present case, V ¼ n0ðp=4ÞD2
0ðL0 þ 21=3L1Þ. The
optimal dimensions (bLL0; bLL1) and performance (fmin) are

reported in Table 1, where the dimensionless lengths are

ðbLL0; bLL1Þ ¼
ðL0; L1Þ

R
ð18Þ

The drawing shown in Fig. 6 is for the case n0 ¼ 3 of

Table 1, and represents an architecture optimized for

minimal flow resistance.

Next, we turn our attention to the thermal perfor-

mance of the structures optimized for minimal flow re-

sistance, Table 1. The global thermal resistance of such

structures was calculated and reported in Fig. 7. The

behavior is qualitatively the same as what we saw in Fig.

4 for radial designs, where eTTm and M continue to be

defined as in Eqs. (5) and (7).

The pumping power that corresponds to the optimal

designs of Table 1 is reported in Fig. 8, where eWW is

defined as in Eq. (15). The relationship between thermal

performance (eTTm), fluid mechanics performance ( eWW ) and

complexity (n0) is similar to what we found for radial

designs (Fig. 5). The common tangent of the constant–n0
curves in Fig. 8 is approximately eTTm ffi 5:94 eWW �0:4, which

is different than the tangent found in Fig. 5. The points



Fig. 7. The thermal resistance of structures with one level of

pairing and minimal flow resistance (Table 1).

Fig. 8. The competition between overall thermal resistance and

pumping power in structures with one level of pairing and

minimal flow resistance (Table 1).

Fig. 9. The effect of the length of the innermost radial pipes

(bLL0) on the thermal resistance of structures with one level of

pairing and n0 ¼ 3.
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of tangency are identified with circles, and are repro-

duced in Fig. 14. Recall that in dendritic structures with

one level of pairing the number of outlets on the pe-

rimeter is twice the number of central ducts, np ¼ 2n0.
5. One level of branching: the minimization of thermal

resistance

The alternative to minimizing flow resistance is to

minimize the thermal resistance of the structure with one

level of pairing. The degrees of freedom are n0 and bLL0,

while the flow rate number M is a specified parameter.
Fig. 9 shows the behavior of eTTm when n0 ¼ 3. We

found numerically that the best designs––the lowest eTTm

values––are found in the limit bLL0 ! 0. In other words,

from the point of view of minimizing the thermal resis-

tance, the design with 2n0 radial tubes is better than any

of the designs with paired tubes.

In conclusion, the thermal performance of the bLL0 ¼ 0

designs recommended by Fig. 9 is the same as what is

reported in Fig. 4 for radial designs, provided that the n0
values of Fig. 4 are replaced by n0=2. For the same

reason, the combined thermal resistance and pumping

power performance is the same as in Fig. 5, provided

that in Fig. 5 we put n0=2 in place of n0. With this

substitution in mind, the common tangent of the eTTmð eWW Þ
curves for the bLL0 designs of Fig. 9 is the same as in Fig.

5, namely eTTm ¼ 3:75 eWW �0:37. Or, if we think in terms of

the number of outlets on the perimeter (np) instead of n0,
the common tangent found in Fig. 5 can be extended

safely to the right, toward larger eWW and np values.
6. Two levels of branching or pairing

The next step toward flow structures with greater

complexity is shown in Fig. 10. The dendritic structure

has two levels of pairing and two constraints, the total

tube volume and the disc radius. The optimal ratios of

successive tube diameters continue to be equal to 21=3

[1,24]. The remaining degrees of freedom of the flow

architecture are n0, bLL0 and bLL1. The overall flow resis-

tance f has been minimized with respect to bLL0 and bLL1.

Table 2 shows a sample of the numerical results. The

n0 ¼ 3 design of Table 2 has been drawn to scale in Fig.

10.



Fig. 10. Structure with two levels of pairing and minimal flow

resistance (n0 ¼ 3).

Fig. 12. The competition between overall thermal resistance

and pumping power in structures with two levels of pairing and

minimal flow resistance (Table 2).

Table 2

Optimized flow structures with two levels of pairing and mini-

mal flow resistance (e.g., Fig. 10)

n0 bLL0
bLL1

bLL2 fmin

3 0.157 0.509 0.432 9.82

6 0.543 0.358 0.192 13.16

12 0.770 0.200 0.090 18.98
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The overall thermal resistance that corresponds to the

flow optimized designs of Table 2 is reported in Fig. 11.
Fig. 11. The thermal resistance of structures with two levels of

pairing and minimal flow resistance (Table 2).
Finally, the minimized pumping power that corre-

sponds to these designs is reported on the abscissa of Fig.

12. The common tangent of the three curves iseTTm ¼ 8:5 eWW �0:43.

We also examined the alternative, which is to mini-

mize the overall thermal resistance (eTTm), instead of the

overall resistance to fluid flow (f , or eWW ). The degrees of

freedom of the flow geometry are n0, bLL0 and bLL1 (or x̂x1),
where ðx̂x1 ¼ x1=RÞ is the radial distance between the two

levels of pairing (i.e., between the two dashed circles in

Fig. 10). Fig. 13 shows the behavior of the overall

thermal resistance when bLL0 and x̂x1 vary subject to con-

stant n0 and M . Although there is an optimal x̂x1 when bLL0

is greater than 0.2, it is clear that the lowest thermal
Fig. 13. The effect of the innermost length (bLL0) and the radial

distance between the two pairing levels (x̂x1) on the thermal re-

sistance of structures with two levels of pairing (e.g., Fig. 10).
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resistance belongs to designs characterized by ðbLL0; x̂x1Þ ! 0.

These are radial designs, and their performance is again

covered by Figs. 4 and 5, provided that for the present

case the n0 values of Figs. 4 and 5 are replaced by n0=4,
where n0 is the number of central tubes in Fig. 10 and

Table 2. The common tangent of the curves for the

present designs (bLL0 ! 0; x̂x1 ! 0) is the same as in Fig. 5,

namely eTTm ¼ 3:75 eWW �0:37.
7. Conclusions

Fig. 14 is a concise summary of the two classes of flow

architectures that were optimized in this paper: archi-

tectures with minimal flow resistance (or minimal

pumping power) vs. architectures with minimal global

thermal resistance. The number of levels of branching

(pairing) makes a difference when the flow geometry is

selected based on the minimization of flow resistance or

pumping power. When the objective is minimal global

thermal resistance, the best flow pattern consists of radial

ducts, and the number of pairing levels loses its effect.

An approximate reading of Fig. 14 justifies the con-

clusion that optimized flow structures that are complex

are also robust. An optimized complex structure per-

forms nearly as well as the next (stepwise more complex)

structure. This characteristic of complex flow structures

has been encountered in the design of other dendritic

flows, for example, in trees for pure heat conduction and

pure fluid flow [1].

A more careful reading of Fig. 14, however, leads to a

conclusion of great importance in the quest for con-

vective flow structures at smaller and smaller scales.

Miniaturization and greater heat generation densities

mean lower eTTm values and higher eWW values. We see that

in this direction the complexity of the flow structure and

the optimization objective matter. In this limit, the ideal
Fig. 14. The common tangents of the eTTmð eWW Þ curves for the

flow architectures optimized in this paper: minimal flow resis-

tance vs. minimal thermal resistance.
expressed in Fig. 1 (low eTTm, low eWW ) can be achieved by

using dendritic structures with increasing and optimized

complexity (i.e., with more levels of pairing) and by

optimizing the structure for minimal flow resistance.

Another important conclusion is that optimized

complexity is a good idea only below a certain eTTm, i.e.,

above a certain level of miniaturization, or above a

certain level of volumetric heat transfer density. The

world of competing flow architectures is characterized

by a sharp ‘‘transition’’ between the simplest structure

(radial), and progressively more complex structures

(dendritic). The simplest structures are preferable wheneTTm J 0:03, or eWW K 5� 105. The more complex struc-

tures prevail in this competition when eTTm K 0:03, oreWW J 5� 105. Such a stepwise change in flow configu-

ration reminds us of natural occurrences of the quest for

global performance, for example, the eddy formation in

fluid low (e.g., shear layers, B�eenard convection) and the

sudden appearance (and disappearance) of morpholog-

ical changes in natural flow systems, animate or inani-

mate (e.g., the sudden appearance of thicker links in the

time-dependent development of a river basin, while rain

falls steadily on an erodable medium [1]). Similar to

animal design is also the pursuit of more than one ob-

jective at the same time, in the present case, minimal

flow resistance and minimal thermal resistance.

In closing, consider the engineering problem of how

to select the flow pattern when the disc size (R) and the

smallest length scale (d0) are specified. These scales fix

the number of outlets, np. For example, if np ¼ 24 we

may choose between the designs represented by three

points in Fig. 14. The design with the smallest thermal

resistance requires the largest pumping power. How to

select one design out of the three possibilities depends on

other considerations, such as the available pumping

power. In any case, as np increases the thermal resistance

becomes insensitive to the increasing complexity, while

the competing designs perform better and better hy-

drodynamically. In conclusion, in the limit of decreasing

length scales and increasing complexity the dendritic

architectures are preferable.

An alternative engineering point of view is to recog-

nize the distance between two outlets as the smallest

length scale (d0, Fig. 1) of the design, and to regard it as

a manufacturing constraint. This distance is held fixed.

The disc radius R and area A increase as the number of

outlets increases. Fig. 15 shows several designs for

np ¼ 3, 6 and 12, where the dendritic patterns have been

optimized for minimal fluid flow resistance.

The fluid-flow performance of the hydrodynamically

optimized designs with fixed d0 is presented in Fig. 16.

The overall pressure drop from the disc center to the

periphery (DP ) is nondimensionalized as

bPP ¼ V 2DP
_mm00md5

0

ð19Þ



Fig. 15. Examples of hydrodynamically optimized flow structures with the same smallest scale (d0) and increasing size (np, or R).

Fig. 16. The minimized overall flow resistance of structures

with the same smallest scale (d0) and increasing size (np, or R).
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where the mass flow rate per unit disc area

½ _mm00 ¼ _mm=ðpR2Þ� is assumed independent of the disc ra-

dius. It can be shown that for Hagen-Poiseuille flow and

optimized ratios of successive tube diameters (Section 4)

the dimensionless pressure drop is

bPP ¼
n5pf

4p3
ð20Þ

for which the optimization of the flow architecture yields

the minimized f values (e.g., Table 1). In particular, the

radial design has f ¼ np, which means that bPP ¼
n6p=ð4p3Þ.
Fig. 16 shows that the global flow resistance bPP in-

creases with np, i.e., with the size of the flow system. This

increase, however, can be slowed down through the use

of progressively more complex dendritic structures. The

small circles plotted in Fig. 16 represent the starting np
values of the indicated structure. Dendrites with one

level of pairing start with np ¼ 6, while dendrites with

two levels of pairing start with np ¼ 12.

A qualitatively similar picture emerges if, instead ofbPP on the ordinate, we plot the dimensionless pumping

power required by the design. In conclusion, we see that

optimized complexity can be beneficial, and that the best

flow structure becomes more complex as the flow system

becomes larger.
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